If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+26x-44=0
a = 2; b = 26; c = -44;
Δ = b2-4ac
Δ = 262-4·2·(-44)
Δ = 1028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1028}=\sqrt{4*257}=\sqrt{4}*\sqrt{257}=2\sqrt{257}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{257}}{2*2}=\frac{-26-2\sqrt{257}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{257}}{2*2}=\frac{-26+2\sqrt{257}}{4} $
| 8(b+1)+4=3(2b–8)–15 | | 4^(-b-3)=8 | | 10^1-x=6x | | (13/(2x))-(4/15)=(31/(6x)) | | 4x+2=4x+16 | | (10x-14)(7x-8)=180 | | 3x^{3}=1029 | | -22÷-12=n | | ×÷4-13÷6=5x÷2-5÷6 | | X/7=x-28/21 | | 2z+8=34-2z | | 10=2x+1.5 | | X+22=2y-44 | | (9+n=-2 | | −22=n/−12 | | Y=3x-0.25 | | –12x−–17x=–15 | | k1/4=−6 | | 8^3x-9=15 | | Z+4=34-2z | | 3x^2+18x+120=0 | | x+132+132=48 | | 2x+(9.5-2x)=9.5 | | –10=–3(k−4)+–1 | | 6x+(9.5-2x)+(24.5-6x-(9.5-2x))=24.5 | | 4x(2x-2)=-2 | | –28p=420 | | 5=2(r+1)−5= | | 5=2(r+1)−5 | | 3x-6=×+10 | | 4(10)3t=12 | | x^2−8x+18=0 |